Drug metabolism and Pharmacokinetics/PK Sciences

EVALUATION OF DRUG-DRUG INTERACTION POTENTIAL BETWEEN SACUBITRIL/VALSARTAN (LCZ696) AND STATINS USING A PHYSIOLOGICALLY-**BASED PHARMACOKINETIC MODEL**

Imad Hanna, Wen Lin and Handan He Novartis Institutes for Biomedical Research, East Hanover, NJ March 14, 2017

Introduction

- LCZ696 (sacubitril/valsartan) has been shown to offer superior clinical benefits (reduced mortality & hospitalizations) to Heart Failure patients compared to the standard of care (enalapril).
- Sacubitril was shown to be an OATP1B1 and OATP1B3 inhibitor in vitro
 - Static predictions estimated a change in exposure in excess of 125% for sensitive OATP1B1 substrates
 - Co-administration with atorvastatin showed ~2-fold increase in atorvastatin Cmax; exposure (AUC) to atorvastatin (or its metabolites) was not significantly increased (<34%)
 - In a separate investigation, no change in simvastatin pharmacokinetics was observed when co-administered with LCZ696
- A physiological-based pharmacokinetic modeling approach was developed to explore atorvastatin and simvastatin interactions with LCZ696
- Additional modeling was done to evaluate the statin-specific DDI risk due to OATP inhibition by LCZ696

LCZ696(sacubitril/valsartan) Disposition

Hydrolysis and transport across polarized cell monolayers

Basolateral to Apical Transport

Hanna et al., (2017) Xenobiotica, In press

Sacubitril OATP inhibition

Equipotent OATP1B1/OATP1B3 inhibition

1000.0300.642Static Predictions △AUC OATP1B1 inhibition ~1.29 OATP1B3 inhibition ~1.15	Dose (mg)		plasma unbound fraction	ا _{inlet,max} ب	JM
Static Predictions ∆AUC OATP1B1 inhibition ~1.29 OATP1B3 inhibition ~1.15	100		0.030	0.642	
		Sta OA OA	atic Predictions ∆AUC TP1B1 inhibition ~1.2 TP1B3 inhibition ~1.1	<u>29</u> 5	

Ayalasomayajula et al. (2016) J. Clin Pharm Ther. 41(4): 424-431

Effect of LCZ696 on the pharmacokinetics of atorvastatin and its metabolites

Ayalasomayajula 2016, Eur J Drug Metab Pharmacokinet, In press

Effect of OATP1B1 polymorphism (reduced activity) on statin exposure

Effect of LCZ696 on SVA Pharmacokinetics

Sacubitril PK prediction

Combined bottom-up and top-down approach Simcyp (Version 15 release 1)

Parameter	Value	Reference					
Absorption (First order absorption model)							
Papp, cm/s	3.87 × 10 ⁻⁶	Caco-2 permeability					
Tlag (h)	0.14	Optimized to fit clinical					
ka (h ⁻¹)	1.3	PK					
Q _{gut} (L/h)	7.48	Simcyp predicted					
Distribution (minimal PBPK)							
Vss	0.253						
Elimination (in vivo)							
CLiv (l/h)	27	User defined					
CI renal	0	minimal unchanged sacubitril in urine					
Interaction							
OATP1B1 IC ₅₀ ,	1.91 µM	Hanna et al, 2017					

Healthy volunteer population (10 trials, 10 subjects per trial) Observed data from 3 clinical trials shown as data points

Lin W. et al., (2017) J. Pharm Sci, In press

Qualification of simvastatin and simvastatin acid-linked PBPK model

Simvastatin/LCZ696	SVA: AUC Ratio		SVA: Cmax Ratio	
	Predicted	Observed	Predicted	Observed
SV dosed 2 h after LCZ696	1.06	1.01	1.02	1.16
SV dosed 1 h after LCZ696	1.08	0.90	1.04	0.96
Co-administration	1.10	0.89	1.09	0.87
			(NOVARTIS

Why was there no DDI observed?

Sacubitril: short Tmax, rapidly cleared via hydrolysis

4000

<u>Rapidly absorbed statin</u> (Tmax: <1.5 h)

- Cmax increase max 2-fold
- AUC increase < 1.5-fold

Slowly absorbed statin (Tmax: >1.5 h)

No meaningful effect on PK with sacubitril

Static DDI predictions: do not take into consideration Tmax, Ft, Papp, passive

NOVARTIS

Sacubitril

Simvastatin acid

Lin W. et al., (2017) J. Pharm Sci, In press

Hepatic OATP uptake clearance/statin PK parameter sensitivity analysis

- Sacubitril has the potential to act as a short-lived perpetrator of OATPmediated DDIs
- Maximal increases of approximately 1.2 fold in the exposure of statins that exhibit a delayed Tmax are anticipated (e.g. simvastatin/lovastatin acid, rosuvastatin)
- Maximum change in exposure ~1.6-fold is anticipated with statins that exhibit Tmax values that coincide with that of sacubitril (e.g. atorvastatin, pitavastatin, pravastatin)

Acknowledgements

- Tao Ji
- Tsu-Han Lin
- Tycho Heimbach
- Heidi Einolf
- Venkateswar Jarugula
- Surya Ayalasomayajula
- **Christopher Breen**

